PS introduction to mathematical logic

Exercises week 2 *

October 13, 2016

1 More about sentencial logic.

- 1. Prove or disprove the following statements.
 - (a) If $\Gamma \Rightarrow \alpha$ or $\Gamma \Rightarrow \beta$ then $\Gamma \Rightarrow (\alpha \vee \beta)$.
 - (b) If $\Gamma \Rightarrow \alpha$ and $\Gamma \Rightarrow \beta$ then $\Gamma \Rightarrow (\alpha \land \beta)$.
 - (c) If $\Gamma \Rightarrow (\alpha \vee \beta)$ then $\Gamma \Rightarrow \alpha$ or $\Gamma \Rightarrow \beta$.
 - (d) If $\Gamma \Rightarrow (\alpha \land \beta)$ then $\Gamma \Rightarrow \alpha$ and $\Gamma \Rightarrow \beta$.
- 2. Call a formula α a dual n-clause, if α is of the form $\beta_1 \wedge \ldots \wedge \beta_n$ where each β_i is either A_i or $(\neg A_i)$. A formula is in n-disjunctive normal form (dnf) is and only if it is of the form $\gamma_1 \vee \ldots \vee \gamma_k$, where each γ_j is a dual n-clause. Show that for each formula α : Either $\neg \alpha$ is a tautology, or there is a formula $\bar{\alpha}$ in disjunctive normal form with $\alpha \Leftrightarrow \bar{\alpha}$.

2 First order logic.

- 1. For each one of the following sets of formulas give an example of a model that satisfies this set of formulas. Try to describe all finite models satisfying the formulas.
 - (a) i. $R(x,y) \wedge R(y,z) \rightarrow R(x,z)$. ii. $R(x,y) \wedge R(x,z) \wedge R(y,w) \wedge R(z,w) \rightarrow R(y,z) \vee R(z,y) \vee (y=0)$
 - (b) i. $R(x,y) \wedge R(y,z) \rightarrow R(x,z)$.
 - ii. $R(x,z) \wedge R(y,z) \rightarrow R(x,y) \vee R(y,x) \vee (x=y)$.
 - iii. R(c, x).

z).

 $^{^*}$ All the exercises are taken from $\it The\ incompleteness\ phenomenon,\ Goldstern-Judah.$

- 2. In each of the following cases find an appropriate first order language and a formula such that there are models that satisfy the formula, and every model that satisfies the formula has the property that:
 - (a) the model is a finite set with exactly n elements (for a given n).
 - (b) the model is a dense linear ordering (like the rationals \mathbb{Q}).
 - (c) the models is a field.
 - (d) the model is a field of characteristic 3.
- 3. If x and y are distinct variables, σ and τ closed \mathcal{M} -terms and μ is any \mathcal{M} -term, show that:

$$\mu(x/\sigma)(y/\tau) = \mu(x/\sigma, y/\tau) = \mu(y/\tau)(x/\sigma).$$

- 4. R(x,y) is an order relation in a model \mathcal{M} if the following formulas are valid in the model:
 - (a) $\neg (R(u, u))$.
 - (b) $R(u, v) \rightarrow \neg R(v, u)$.
 - (c) $R(u,v) \wedge R(v,w) \rightarrow R(u,w)$.

Given a formula $\varphi(x)$, we define a subset $A_{\varphi} \subseteq M$ by:

$$A_{\varphi} := \{ a \in M : \mathcal{M} \models \varphi(x/a) \}.$$

Similarly, if we have a formula with two free variables $\varphi(x, y)$, we define $A_{\varphi} \subseteq M \times M$, a subset of the set of pairs from M, by:

$$A_{\varphi} := \{(a, b) \in M \times M : \mathcal{M} \models \varphi(x/a, y/b)\}.$$

We call A_{φ} the set characterized by φ . What are the sets characterized by the following formulas:

- (a) R is an order relation in the model \mathcal{M} and $\varphi(u,v) = \neg R(u,v)$.
- (b) R is an order relation in the model \mathcal{M} and $\varphi(u,v) = \neg R(u,v) \land \neg R(v,u)$.
- (c) R is an order relation in the model \mathcal{M} which is a tree, (i.e. the following formula is valid in the model $R(u,v) \wedge R(u,w) \rightarrow R(v,w) \vee R(w,v) \vee (v=w)$) and $\varphi(u,v) = \neg R(v,u)$.