
Special topics on set theory WS2022
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Diana Carolina Montoya ∗

1 Cardinal arithmetic and singular cardinals.

• Review of basic concepts- cardinality and cofinality.

• König’s Theorem. Exponentiation of cardinals. GCH.

• A short review on forcing.

• Easton’s theorem.

2 Arithmetic of singular cardinals.

• The singular cardinal hypothesis.

• Silver’s Theorem.

• Galvin-Hajnal’s theorems.

3 Large cardinals and the singular cardinals problem.

• Elementary embeddings and some large cardinal notions.

• Measurable cardinals and supercompact cardinals.

• Silver’s forcing.

• Příkrý forcing.
∗Special thanks to Julia Millhouse, who has helped typing this notes
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4 Příkrý-type forcings

• Adding many Příkrý-sequences.

• Nice systems of ultrafilters.

• Collapsing cardinals.

• Down to ℵω.

5 A gently introduction on pcf

Time availability dependent.
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6 Introduction

This course deals with basics on cardinal arithmetic, focusing on singular cardinals. We start with an
introduction to the basic concepts and results, for this purpose we introduce the following definitions:

This section was taken from Jech [Jec03].

7 Ordinals

Definition 1 (Ordinals). A set x is an ordinal if it is transitive and well-ordered by ∈. Here transitive
means that every element y ∈ x is such that y ⊆ x. Also, x is well-ordered by ∈ if every non-empty
subset of x has an ∈-minimal element.

Ordinals correspond to order types of well-ordered sets, i.e. every well ordered set is isomorphic to
a unique ordinal.

Definition 2 (Transfinite induction). Let C be a class of ordinals and assume that:

1. if α ∈ C then α+ 1 ∈ C.

2. if α is a limit ordinal and for all β < α, β ∈ C, then α ∈ C.

Then C is the class of all ordinals.

Now we present the basic definitions or ordinal arithmetic:

Definition 3 (Addition of ordinals).

1. α+ 0 = α.

2. α+ (β + 1) = (α+ β) + 1.

3. α+ γ = supβ<γ α+ β when γ is a limit ordinal.

Definition 4 (Multiplication of ordinals).

1. α · 1 = α.

2. α · (β + 1) = (α · β) + α.

3. α · γ = supβ<γ α · β when γ is a limit ordinal.

Definition 5 (Exponentiation of ordinals).

1. α1 = α.

2. αβ+1 = (αβ) · α.

3. αγ = supβ<γ α
β when γ is a limit ordinal.
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8 Cardinality

Two sets X and Y have the same cardinality (write |X|= |Y |) if there exists a one-to-one map of
X onto Y . We define cardinality of well-ordered sets and using the axiom of choice we extend this
definition to all sets.

Definition 6. And ordinal α is called a cardinal number if |α|≠ |β| for all β < α.

This, if W is a well-ordered set, there is an ordinal α such that |W |= |α| and so:

|W |= min{α : |W |= |α|}

Definition 7. A set X is finite if |X|= |n| for some n ∈ N. Otherwise, we say that X is infinite.

The ordering of cardinal number is given as follows:
|X|≤ |Y | is there is a one-to-one mapping of X into Y

Also |X|< |Y | if |X|≤ |Y | and |X|̸= |Y |.

Proposition 8 (AC). The order defined above is linear.

We now prove one of the most important results of Cantor.

Theorem 9. For every set X, |X|< |P(X)|, where P(X) is the power set of X, i.e. the set of all
possible subsets of X.

Proof. Clearly |X|≤ |P(X)| because the function f : X → P(X), that sends every element x ∈ X to
its singleton {x} is an injection. Now, let g : X → P(X) be an arbitrary function. It is enough to
show that there is a set Y ∈ P(X) such that Y /∈ ran(g).

To this end put Y = {x ∈ X : x /∈ g(x)} and notice that is z is such that g(z) = Y , then z ∈ Y if
and only if z /∈ Y , a contradiction.

Theorem 10 (Cantor-Bernstein). If |X|≤ |Y | and |X|≥ |Y |, then |X|= |Y |.

Now, we define the basic operations between cardinals:

Definition 11. Let κ and λ be two infinite cardinals, we define:

• κ+ λ := |X ∪ Y | where X and Y are disjoint sets such that |X|= κ and |Y |= λ.

• κ ·λ := |X×Y | where X and Y are two sets such that |X|= κ, |Y |= λ and × denotes the classical
cartesian product of these.

• κλ := |XY | where X and Y are two sets such that |X|= κ, |Y |= λ and XY = {f : Y → X :

f is a function }.
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8.1 Cofinality

Definition 12 (Cofinality). Let α > 0 be a limit ordinal. We say that an increasing β-sequence
(αξ : ξ < β), β a limit ordinal is cofinal in α if supξ<β αξ = α. Similarly, A ⊆ α is cofinal in α, if
supA = α. If α is an infinite limit ordinal, the cofinality of α is:

cf(α) = the least limit ordinal β such that there is an increasing β-sequence (αξ : ξ < β)

with supξ<βαξ = α.

Obviously for all ordinals α, cf(α) ≤ α.

Proposition 13. Let α be a limit ordinal, then:

1. cf(cf(α)) = cf(α).

2. cf(α) is a regular cardinal.

3. If κ is an infinite cardinal, then κ < κcf(κ).

Proof. 1. Clearly cf(cf(α)) ≤ cf(α) because {β : β < α} is cofinal in α. On the other hand, let
(αξ : ξ < cf(α)) be cofinal in α.

2. It is a consequence of the item above.

3. Let F be a collection of κ many functions from cf(κ) to κ. Put F = {fα : α < κ}. It is enough to
show that there is a function f : cf(κ) → κ such that f ̸= fα, for all α < κ. Let κ = supξ<cf(κ) αξ.

Define the desired function as follows: f(ξ) = min{γ < κ : γ ̸= fα(ξ) for all α < αξ}. Such γ

always exists because |{fα(ξ) : α < αξ}|≤ |αξ|< κ. Clearly f ̸= fα for all α.

Definition 14 (Regular and singular cardinals). A cardinal number λ is called regular, if cf(λ) = λ

and it is called singular otherwise, i.e. cf(λ) < λ.

8.2 Cardinal arithmetic

Recall that we are interested into defining the arithmetic operations between cardinals. It turns out
that addition and multiplication are both quite simple. Let κ, λ be two infinite cardinals, then:

κ+ λ = κ · λ = max{κ, λ}

The exponentiation of cardinals is much more interesting. We will devote some time to look at this
operation with more detail.

Lemma 15. If 2 ≤ κ ≤ λ and λ is infinite, then κλ = 2λ.

Proof. Since 2 ≤ λ, then 2κ ≤ λκ and also κλ ≤ (2κ)λ = 2κ·λ = 2λ.
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If κ, λ are infinite and λ < κ, computing κλ is more difficult: On one hand, if 2λ ≥ κ then κλ = 2λ,
but if 2λ < κ we can only conclude that κ ≤ κλ ≤ 2κ.

Lemma 16. If |A|= κ ≥ λ, then the set [A]λ has cardinality κλ.

Proof.

If λ is a cardinal, let:

κ<λ = sup{κµ : µ is a cardinal and µ < λ}

For the sake of completeness, we also define κλ
+

= κλ for infinite successor cardinals λ+.
If κ is an infinite cardinal and |A|≥ κ, let

[A]<κ = Pκ(A) = {X ⊆ A : |X|< κ}

8.3 Infinite sums and products

Let {κi : i ∈ I} be an indexed set of cardinal numbers. We define:

Σi∈Iκi = |
⋃
i∈I

Xi|

where {Xi : i ∈ I} is a disjoint family of sets such that |Xi|= κi. This definition does not depend
of the choice of the Xi’s.

Also, if κ and λ are cardinals and κi = κ for each i < λ, then:

Σi<λκi = λ · κ

Lemma 17. If λ is an infinite cardinal and κi > 0 for each i < λ, then:

Σi<λκi = λ · sup
i<λ

κi.

Proof. Let κ = supi<λ κi and σ = Σi<λκi. First, since κi ≤ κ for all i we have Σi<λκi ≤ λ · κ.
On the other hand, since κi ≥ 1 for all i we have λ = Σi<λ1 ≤ σ and since σ ≥ κi for all i we get

σ ≥ supi<λ κi = κ. Therefore λ · κ ≤ σ.

In particular, if λ ≤ supi<λ κi, we have:

Σi<λκi = sup
i<λ

κi

Thus, we can characterize singular cardinals as follows: An infinite cardinal κ is singular just in
case

κ = Σi<λκi

where λ < κ and for each i, κi < κ.
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An infinite product of cardinals is defined using infinite products of sets. If {Xi : i ∈ I} is a family
of sets, then the product is defined as follows:

Πi∈IXi = {f : f is a function on I and f(i) ∈ Xi for each i ∈ I}

Note that if some Xi is empty, then the product is empty. If all the Xi are non-empty, then AC
implies that the product is non-empty.

If Πi∈Iκi = |Πi∈IXi|,
where {Xi : i ∈ I} is a family of sets such that |Xi|= κi. Again, it follows from the axiom of choice

that the definition does not depend on the choice of sets Xi’s.
If κi = κ for each i ∈ I, and |I|= λ, then Πi∈Iκi = κλ. Also, infinite sums and products satisfy

some of the rules satisfied by finite sums and products. For instance:

• Πi∈Iκ
λ
i = (Πi∈Iκi)

λ.

• Πi∈Iκ
λi = κ(Σiλi).

• If I is a disjoint union I =
⋃

j∈J Aj , then

Πi∈Iκi = Πj∈J(Πi∈Aj
κi)

Infinite product of cardinals can be evaluated using the following lemma:

Lemma 18. If λ is an infinite cardinal and (κi : i < λ) is a non-decreasing sequence of non-zero
cardinals, then:

Πi<λκi = (sup
i
κi)

λ

Proof. Let κ = supi<λ. Since κi ≤ κ for each i < λ we have Πi<λκi ≤ Πi<λκ = κλ.
To prove that κλ ≤ Πi<λκi we consider a partition of λ into λ-many sets of size λ, {Aj : j < λ}. So

λ =
⋃

j<λAj . Since Πi∈Ajκi ≥ κi for all i, Πi∈Ajκi ≥ supi∈Aj
κi. Thus Πi<λκi = Πj<λ(Πi∈Ajκi) ≥

Πj<λκ = κλ.

Theorem 19 (König’s Theorem). If {κi : i ∈ I} and {λi : i ∈ I} are two indexed families of cardinal
numbers such that κi < λi, then

Σi∈Iκi < Πi∈Iλi

Proof. We shall show that Σi<λκi ≱ Πi<λλi: Let (Ti : i ∈ I) be such that |Ti|= λi for each i ∈ I.
It suffices to show that if (Zi : i ∈ I) are subsets of T = Πi∈ITi and |Zi|≤ κi for all i ∈ I, then⋃

i∈I Zi ̸= T .
For every i ∈ I, let Si be the projection of Zi into the i-th coordinate, i.e. Si = {f(i) : f ∈ Zi}.

Since |Zi|< |Ti| we have that Si ⊆ Ti and Si ̸= Ti. Finally. let f ∈ T be a function such that f(i) /∈ Si

for all i ∈ I. Clearly, f /∈ Zi and so f /∈
⋃

i∈I Zi as we wanted.
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Corollary 20. 1. κ < 2κ for every cardinal κ.

2. cf(2κ) > κ.

3. cf(κλ) > λ.

4. κcf(κ) > κ.

9 The continuum function

Recall that the generalized continuum hypothesis (GCH) states that:

2ℵα = ℵα+1 for all ordinals α

GCH is independent from the axioms of ZFC. Under the assumption of GCH cardinal exponentiation
is evaluated as follows:

Theorem 21. If GCH holds and κ, λ are infinite cardinals , then:

1. If κ ≤ λ then κλ = λ+.

2. If cf(κ) ≤ λ < κ then κλ = κ+.

3. If λ < cf(κ) then κλ = κ.

Proof. 1. Note that λ+ = 2λ ≤ κλ ≤ (2κ)λ = 2κ·λ = 2λ = λ+.

2. First κ ≤ κλ ≤ 2κ = κ+. Since cf(κ) ≤ λ then κ < κλ: we have proven that κ < κcf(κ) ≤ κλ, so
κ+ ≤ κλ.

3. κλ = supα<κ α
λ and |αλ|≤ 2|α|·λ = (|α|·λ)+ ≤ κ.

We finalize with a summary of the main restrictions on the continuum function:

Theorem 22. 1. If κ ≤ λ then 2κ ≤ 2λ.

2. cf(κ) > κ.

3. If κ is a limit cardinal then 2κ = (2<κ)cf(κ).

Proof. We have been already proven 1. and 2., to prove 3. let κ = Σi<cf(κ)κi where κi < κ for all
i < cf(κ). We have:

2κ = 2Σi<cf(κ)κi = Πi<cf(κ)2
κi ≤ Πi<cf(κ)2

<κ = (2<κ)cf(κ) ≤ (2κ)cf(κ) = 2κ.
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For regular cardinals, the conditions in the theorem above are the only restrictions on the value
of the continuum function. We shall prove this later when we state Easton’s theorem. For singular
cardinals the situation is very different. Let’s prove the following result of Silver.

Corollary 23. If κ is a singular cardinal and if the continuum function is eventually constant below
κ, say with value λ, then 2κ = λ.

Proof. If κ is a singular cardinal that satisfies the assumptions, then there is µ such that cf(κ) ≤ µ < κ

and 2<κ = λ = 2µ. Thus, 2κ = (2<κ)cf(κ) = (2µ)cf(κ) = 2µ.

If κ is a limit cardinals and the continuum function below κ is not eventually constant, then the
cardinal 2<κ = λ is a limit of a non-decreasing sequence: λ = 2<κ = supα<κ 2

|α| of length κ, so
cf(λ) = cf(κ). And so 2κ = (2<κ)cf(κ) = λcf(κ) = λcf(λ).

If κ is regular then κ = cf(κ) and so 2κ = κκ, so 2κ = κcf(κ).
The Gimmel function (κ)ג = κcf(κ) determines the values of the continuum function:

Corollary 24. 1. If κ is a successor, then 2κ = .(κ)ג

2. If κ is a limit cardinal and the continuum functions is constant below κ, then 2<κ = 2<κ · .(κ)ג

3. Otherwise 2κ = .(κ>2)ג

More on singulars Can the minimum cardinal for which the continuum hypothesis fail be singular?
The negative answer to this result was given by Silver, who proved:

Theorem 25. If κ is a singular cardinal of uncountable cofinality, and if 2λ = λ+ for all λ < κ, then
2κ = κ+.

In the case of regular cardinals, the full set of rules for exponentiation can be determined when
assuming GCH.

On the contrary, it turns out that for the arithmetic of singular cardinals, it is not just the continuum
function 2κ which determines exponentiation, but also the function κcf(κ).

10 Models of set theory

Recall that the language of set theory consist of one binary predicate symbol ∈.

Definition 26. Let M be a class, E a binary relation on M and let φ(x1, . . . , xn) be a formula of
the language of set theory. The relativization of φ to (M,E) is the formula φM,E(x1, . . . , xn) defined
inductively as follows:

(x ∈ y)M,E = xEy

(x = y)M,E = x = y

(¬φ)M,E ↔ ¬(φM,E)

(φ ∧ ψ)M,E ↔ φM,E ∧ ψM,E .
(∃xφ)M,E ↔ ∃x ∈MφM,E .
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One writes (M,E) |= φ(x1, . . . , xn) and says the model (M,E) satisfies φ.
We point out that while this is a legitimate statement in every particular instance of φ, the general

satisfaction relation is formally indefinable in ZF.

10.1 Relative consistency

Let T be a mathematical theory (in practice ZF or ZFC) and let A be an additional axiom. We say
that T +A is relative consistent to T if the following implication holds:

If T is consistent, so is T +A

If both A and ¬A are consistent with T we say that A is independent of T .

10.2 Transitive models and ∆0-formulas

If M is a transitive class, then the model (M,E) is called a transitive model.

Definition 27. A formula of set theory is ∆0 if:

• it has no quantifiers, or

• it is φ ∧ ψ, φ ∨ ψ, ¬φ, φ→ ψ or φ↔ ψ, where φ and ψ are ∆0.

• it is (∃x ∈ y)φ or (∀x ∈ y)φ where φ is ∆0.

Lemma 28 (Absolutness of ∆0-formulas). If M is a transitive class and φ is a ∆0-formula, then for
all x1, . . . , xn.

φM (x1, . . . , xn) ↔ φ(x1, . . . , xn)

Warning: While many of the basic concepts in set theory can be expressed as ∆0-formulas, the
following expressions are not:

Y = P(X), |Y |= |X|, α is a cardinal, β = cf(α), α is regular.

11 Forcing

The content of this section was taken from Kunen [Ku] Forcing is a technique used to produce models
of ZFC with specific properties. It was developed by Paul Cohen and up to this day it is a main
tool used in different areas within set theory. Cohen proved (using this method) that given a model
M |= ZFC, there is a generic extension N ⊇M which is also a model of ZFC and in which CH is false,
i.e. 2ℵ0 > ℵ1.

To build the model NTo build the model N , we fix some forcing poset P will gives us a model N
that satisfies ZFC. Exactly what N will satisfy beyond ZFC depends on the P we choose.

Definition 29. • A filter G ⊆ P is called P-generic over M if and only if it meets all dense D ⊆ P
with D ∈M .
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• P is atomless if for all r ∈ P there are p, q ≤ r such that p ⊥ q), then G /∈M .

Regarding the first item, since we only deal with countable models, such a filter will always exist. A
consequence of the second item is that if G ⊆ P is generic, G /∈M . The generic extension N ⊇M will
be denoted M [G]; N is the minimal model of ZFC containing M , G, and having the same ordinals as
M .

For a simple example, let’s look at Cohen forcing:

Definition 30. For any I and J , Fn(I, J) is the set of all finite partial functions from I to J , that is:

Fn(I, J) = {p : I → J : p is the graph of a function ∧ p ∈ [I × J ]<ω}

Ordered by reverse inclusion, i.e. q ≤ p if and only if q ⊇ p.

Then P ∈ M since the definition of being a finite function is an absolute notion. Similarly, the
following are subsets of P in M for all i ∈ I:

Di = {q ∈ Fn(I, J) : i ∈ dom(q)}

Moreover, one can show these are dense subsets of P,so that if G is P-generic over M , G ∩Di ̸= ∅
for all i ∈ I.

By the definition of the ordering ≤ and the fact that G is a filter (i.e. only contains pairwise
compatible elements), fG :=

⋃
G ∈M [G] is a function from I to J , and since G is generic we know f

is total. Now, say I = κ× ω and J = 2 and κ < o(M), so κ ∈M . By setting

Aα = {n ∈ ω : fG(α)(n) = 1},

we can think of fG as coding κ many subsets of ω. In other words, for fixed α < κ the function
fG(α) : ω → 2 acts as a characteristic function for the set Aα. Also if α ̸= β < κ, then Aα ̸= Aβ since
G intersects each of the the following dense sets in P:

{Eα,β = {p ∈ P : ∃n((α, n), (β, n) ∈ dom(p) ∧ p(α, n) ̸= p(β, n)}

Recall that when we speak of the ordinals ωM
1 < ωM

2 ∈ On ∩M , even though we living in V can
see that these are countable ordinals (since M is countable), these are defined inside M to be the first
and second uncountable cardinals.

Suppose κ = ωM
2 . Then N =M [G] contains the sequence ⟨Aα : α < κ⟩, which are κ many distinct

subsets of ω, implying |P(ω)|= 2ω ≥ κ = ℵM
2 , and therefore

M [G] |= ¬CH + ZFC

.
If also M |= GCH, then one can show that in M [G], 2ℵ0 ≤ κ, meaning the continuum will be

exactly size κ.
Warning! One of the important properties of this specific poset P is that ωM

1 = ω
M [G]
1 and

κ = ωM
2 = ω

M [G]
2 , so that to the people in M [G], the sequence ⟨Aα : α < κ⟩ really is an ω2 length

sequence.
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12 Generic Extensions

Let M be a countable transitive model of ZF − P . When (P,≤,1) is a forcing poset, let PinM
abbreviate (P,≤,1) ∈ M . Note that the definition of being a forcing poset (i.e. a partial order with
a maximal element) is absolute for transitive models of ZF − P , and in many cases absoluteness also
implies that the ordering ≤ on P is an element of M , but this is not always the case. It is the case,
however, for the poset we used above, Fn(I, J).

Definition 31. • D ⊆ P is dense in P if for all p ∈ P, there is q ≤ p, q ∈ D.

• Given G ⊆ P, we say that G is a filter if:

– G ̸= ∅.

– If p ≤ q and p ∈ G, then q ∈ G.

– If p, q ∈ G, there is r ∈ G such that r ≤ p and r ≤ q.

Definition 32 (Genericity). For a forcing notion P, G is P-generic over the model M if G is a filter
on P and G ∩D ̸= ∅ for all dense D ⊆ P such that D ∈M .

Lemma 33 (Generic filter existence lemma). Let M be a countable transitive model of ZF \¶ and let
P ∈M be a forcing poset. Then, for every p ∈ P, there exists a filter G on P such that p ∈ G and G is
P-generic over M .

Proof. Since M is countable, one can enumerate the dense subsets of P in M as (Dn : n ∈ ω). Now,
construct a sequence (pn : n ∈ ω) ⊆ P such that pn ∈ Dn and pn+1 ≤ pn for all n ∈ ω.

Let p0 ∈ D0 such that p0 ≤ p; if we have already built pn, use that Dn+1 is dense to pick
pn+1 ∈ Dn+1 such that pn+1 ≤ pn. Hence G = {q ∈ P : ∃n(pn ≤ q)} is P-generic over M .

Notice that the statement "being dense" is absolute, but the enumeration of the dense sets in M of
order type ω must take place outside of M , so in the usual situations G /∈M .

Lemma 34. If P ∈ M is atomless (i.e. for all r ∈ P there exists p, q ∈ P such that p and q are
incompatible) and G is P-generics over MN , then G /∈M .

Proof. Let D = P\G, then D is dense and if G were to be an element of M , so would be D and
G ∩D = ∅, a contradiction.

Why D is dense?: Take p ∈ P, if p ∈ D we are done, otherwise p ∈ G and we can use that P
is atomless to find q, r ∈ P, q, r ≤ p so that q and r are incompatible. Then q and p cannot be
simultaneously in G (elements in a filter have to be pairwise compatible), so either q or r ∈ D.

We define now M [G].

Definition 35. (Definition by recursion) τ is a P-name if τ is a binary relation and for all ⟨σ, p⟩ ∈ τ ,
σ is a P-name and p ∈ P.

Denote by V P the class of all P names.
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For example, ∅ is a P-name, and therefore so is ⟨∅, p⟩ for all p ∈ P and {⟨⟨∅,⊮⟩, p⟩}, {⟨∅, p⟩, ⟨∅, q⟩},
etc...

Definition 36. If M is a transitive model of ZF − P , P ∈ M , then MP = V P ∩M , i.e. the set of
τ ∈M such that M |= “τ is a P-name".

Definition 37. Definition by recurison If τ is a P-name and G ⊆ P, define

val(τ,G) = τG = {val(σ,G) : ∃p ∈ P ⟨σ, p⟩ ∈ τ}

.
Then M [G] = {τG : τ ∈MP} whenever M is a transitive model of ZF − P and P ∈M .

Example: Suppose we have P-names σ1, σ2, σ3. If we want to collect the things they name, we
can set

τ = {⟨σ1,1⟩, ⟨σ2,1⟩, ⟨σ3,1⟩}

.
Then τ is a P-name, and if G ⊆ P is any filter, then 1 ∈ G, and so τG = {σ1

G, σ
2
G, σ

3
G}.

If however p1, p2, p3 ∈ P, and say π = {⟨σ1, p1⟩, ⟨σ2, p2⟩, ⟨σ3, p3⟩}, then πG is conditional on which
p ∈ P end up in G.

But we want to make sure all elements in the ground model M end up in any generic extension, so

Definition 38. For P = (P,≤,1) a forcing poset and any set x, define, by recursion on elements in x,
the canonical name (or “check name") of x to be the set

x̌ = {⟨y̌,1⟩ : y ∈ x}

.

Proposition 39. Suppose M is a transitive model of ZF − P , P ∈M , and G ⊆ P a filter. Then:

1. ∀x ∈M (x̌ ∈MP ∧ val(x̌, G) = x).

2. M ⊆M [G].

Proof. It suffices to prove (1) since (2) follows immediately. If x ∈ M , then x̌ ∈ M by absoluteness,
and by recursion we have that x̌ is indeed a P- name. Therefore x̌ ∈M ∧ x̌ ∈ V P, so x̌ ∈M ∩V P =MP.
Similarly by recursion one shows val(x̌, G) = x since the former set is equal to {val(y̌, G) : y ∈ x}.

We also want a canonical name for the filter G; note that even though in the interesting (nontrivial)
cases G /∈M , still in M one can define a name which, in the extension by G, will always be evaluated
to be that set G:

Definition 40. For a forcing poset P, let

Γ = {⟨p̌, p⟩ : p ∈ P}

.
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Therefore,

Proposition 41. If M is a transitive model of ZF − P , P ∈ M , and G ⊆ P is a filter, then Γ is a
P-name and ΓG = G. Hence G ∈M [G].

Proof. By definition, ΓG = {p̌G : p ∈ G} = {p : p ∈ G} = G.

Let us define P names which we want to be evaluated in the generic extension to be the unordered
pair and the ordered pair of any two elements of M [G].

Definition 42. For σ, τ P-names, let up(σ, τ) = {⟨σ,1⟩, ⟨τ,1⟩}, and op(σ, τ) = up(up(σ, σ),up(σ, τ)).

One can check
val(up(σ, τ), G) = {σG, τG}

and
val(op(σ, τ), G) = (σG, τG),

which is what we wanted.

Proposition 43. Under the hypotheses of the previous Proposition, M [G] is transitive, and M [G] |=
Extensionality, Foundation, Pairing, and Union.

Proof. By definition, the elements of M [G] are sets of the form τG for τ ∈ MP, and every element of
τG is a set of the form σG for σ ∈MP; this shows that M [G] is transitive.

Transitivity implies M [G] satisfies the Axiom of Extensionality. Foundation is satisfied because
this is true for every class.

That up(σ, τ) is a name in MP whenever σ, τ ∈MP shows that M [G] satisfies the Pairing Axiom.
To show the Union Axiom is satisfied, we show that for any a ∈M [G], there exists b ∈M [G] such

that
⋃
a ⊆ b.

Proposition 44. M [G] is a transitive model of ZFC.

Although M [G] is bigger than M , it is not too much.

Proposition 45. 1. rank(τG) ≤ rank(τ);

2. On ∩M [G] = On ∩M ;

3. |M [G]| = |M |.

Proof. 1. rank(τG) = sup{rank(x) + 1 : x ∈ τG} by the definition of rank (see Kunen Chapter I.9).
Then supposing by induction we have shown that for all σ ∈ dom(τ), rank(σG) ≤ rank(σ) and
the fact that rank(σ) < rank(τ), sup{rank(x)+ 1 : x ∈ τG} ≤ sup{rank(σG)+ 1 : σ ∈ dom(τ)} ≤
rank(τ).

2. The inclusion ⊇ is immediate, so suppose α is an ordinal in M [G]. Then α = τG for some τ ∈MP,
and rank(τ) is some ordinal in M since it is absolute, so since α = rank(α) ≤ rank(τ), α ∈M .
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3. MP ⊆M ⊆M and |M [G]| ≤ |MP|.

We would like now to prove that M [G] is a model of ZFC as well. Although in this notes we won’t
do that, we would like now to motivate the two main theorems of forcing.

Suppose we would like to prove M [G] |= Comprehension. This is indeed, one of the hardest axioms
to prove: Let’s try to exemplify why:

Suppose φ(x, y) is a formula and σ ∈ P, we want to argue that the set S = {n ∈ ω : φ(n, σG)
M [G]}

is an element of the model M [G].
This is not immediate obvious even in simple cases such us when φ(x, y) = x ∈ y and so S = ω∩σG.

We would like to find a P-name τ ∈MP such that S = τG.
The desired τG is in fact, as follows:

{(ň, p) : n ∈ ω ∧ p ∈ P ∧ p ⊩ φ(ň, σ)}

Now, we will define the forcing relation ⊩ and we will state the main theorems of forcing, whose
goal is to try to answer the following question (for our particular example): Why is τG ∈ M [G]? and
why is τG = S?. We define:

Definition 46. Given a poset P, the P-forcing language FLP is the class of logical formulas formed
using the binary relation ∈ and that all names V P as constants.

Definition 47. Let ψ be a sentence in FLP∩M, M [G] |= ψ corresponds to the usual model theoretical
meaning, by interpreting ∈ as membership and τ as τG.

Definition 48. Assume M |= ZF \¶, P ∈ M is a forcing notion and ψ is a sentence in FLP ∩ M.
Then:

p ⊩P,M ψ holds 1 ↔M [G] for all G ⊆ P generic over M such that p ∈ G

Lemma 49. If p ⊩ φ and q ≤ p, then q ⊩ φ.

The two most important theorems of forcing are stated now:

Theorem 50 (The truth lemma). Let M be a countable transitive model for ZF \¶, P ∈ P be a forcing
notion, ψ be a sentence of FLP ∩M and G be P-generic over M . Then:

M [G] |= ψ ↔ ∃p ∈ G such that p ⊩ ψ

Theorem 51 (Definability lemma). Let M be a countable transitive model of ZF \¶. Let φ(x1, . . . , xn)
be a formula in L = {∈}. Then the set

{(p,P,≤,⊮, ν1, . . . , νn) : (P,≤,⊮) is a forcing notion ∧p ∈ P∧(P,≤,⊮) ∈M∧ν1, . . . , νn ∈MP∧p ⊩P,M φ(ν1, . . . , νn)}

is definable subset of M without parameters.
1We read p forces ψ
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13 Computing cardinal exponentiation

Let M be a countable transitive model of ZFC. We shall use posets of the form Fn(I, J) to get models
M [G] in which 2ℵ0 is any value not contradicting König’s theorem.

Example 52. Let P = Fn(I, J) where I, J ∈ M and I, J are both infinite. Let G be P-generic over
M and let f =

⋃
G, then f ∈M [G] and f is a function from I to J .

Let I = ω and J = ωM
5 . Now ωM = ω but ωM

5 is a countable ordinal, although from the point of
view of M this is the fifth uncountable cardinal.

M [G] contains a map between ω onto ωM
5 , so M [G] |= ωM

5 is countable.
Since M [G] |= ZFC, it has his own uncountable cardinals ωM [G]

1 , ω
M [G]
2 , . . . , ω

M [G]
5 but these are all

above ωM
5 . One can prove that these are in fact ωM [G]

6 , ω
M [G]
7 , . . . , ω

M [G]
10 .

For now, we concentrate in situations in which M and M [G] have the same cardinals.

Definition 53. For a forcing poset P ∈M :

1. P preserves cardinals if and only if for all generic G ⊆ P: (β is a cardinal )M if and only if
(β is a cardinal )M [G] for all β < o(M).

2. P preserves cofinalities if and only if for all G ⊆ P generic cfM (γ) = cfM [G](γ) for all limit
γ < o(M).

Recall that: Being a cardinal can be written as: ∀α < β ∀f ¬(f : α→ β) (onto).

Lemma 54. For a forcing poset P ∈M .

1. P preserves cofinalities if and only if for all generics G ⊆ P:
(∗) for all limit β with ω < β < o(M) (β is regular)M → (β is regular)M [G]

2. If P preserves cofinalities then it preserves cardinalities.

Proof. 1. Assume (∗) and fix a limit γ < o(M), let β = cfM (γ). We prove that cfM [G](γ).

Fix X ∈ P(γ) ∩M with ot(X) = β and sup(X) = γ. We know that (β is regular)M and by
hypothesis this implies that (β is regular)M [G]. Thus cfM [G](γ) = cfM [G](β) = β.

2. M and M [G] have the same regular cardinals. Now, in ZFC each cardinal is regular or the limit
of regular cardinals.

13.1 The chain condition

Definition 55. • Let P be a forcing poset. Then p, q ∈ P are compatible (write p ∥ q) if there is
a common extension r ∈ P, r ≤ p and r ≤ q.

• Let P be a forcing poset. Then p, q ∈ P are compatible (write p ∥ q) if there is a common
extension r ∈ P, r ≤ p and r ≤ q.
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• A subset A ⊆ P is an antichain if all its elements are pairwise incompatible.

Definition 56 (The countable chain condition). We say that P has the countable chain condition
(ccc) if every antichain on P is countable.

Theorem 57. If P ∈M and (P is ccc )M , then P preserves cofinalities.

We first prove the following lemma:

Lemma 58. Assume that P ∈ M , (P is ccc)M and A,B ∈ M . Let G be P-generic over M . Fix
f : A → B, f ∈ M [G], then there is a function F : A → P(B) with F ∈ M such that for all a ∈ A,
f(a) ∈ F (a) and (|F (a)|≤ ℵ0)

M .

Proof. Fix a P-name ḟ ∈ MP for f such that ḟG = f . Then ḟ : Ǎ → B̌ is a sentence in FLP ∩ M
about the names ḟ , Ǎ, B̌ and the model M [G] satisfies ḟ : Ǎ→ B̌ is a function.

By the forcing theorem, there is a p ∈ G such that p ⊩ ḟ : Ǎ → B̌. Now, define the function F as
follows:

F (a) = {b ∈ B : ∃q ≤ p q ⊩ ḟ(a) = b}

By the definability lemma, the function F belongs to the model M . To prove that f(a) ∈ F (a).
Let b = f(a), then M [G] |= ḟ(ǎ) = b̌.

Thus, there exists q ≤ p, q ∈ G such that q ⊩ ḟ(ǎ) = b̌ and by the Definition of F we get b ∈ F (a).
Finally, to prove that (|F (a)|≤ ℵ0)

M let b ∈ F (a) and choose qb ≤ p so that qb ⊩ ḟ(ǎ) = b̌, the the set
{qb : b ∈ F (a)} is an antichain.

Furthermore, the function b 7→ qb may be assumed to lie in M . Now, in M |F (a)|≤ ℵ0 because of
the chain condition.

Now we proceed with the main proof.

Proof of the theorem: By the lemma, it is enough to fix a limit ordinal ω < β < o(M) and assume that
(β is regular in )M and prove that this still holds in M [G].

Suppose this is not the case. Then there isX ⊆ β withX ∈M [G], sup(X) = β and α := ot(X) < β.
Let f : α→ X be the unique order preserving bijective map.

Then f : α → β so by the lemma before we can find a function F ∈ M , F : α → P(β). Let
Y =

⋃
γ<α F (γ), this is a subset of β such that sup(Y ) = β.

In M the set Y is the union of fewer than β countable sets, so |Y |< β.

Recall that if we force with Fn(κ× ω, 2) we add a sequence (hα : α < κ) such that hα ∈ 2ω. So in
the corresponding generic extension 2ℵ0 ≥ κ.

The following results aim to compute the exact value of 2ℵ in M [G]. For this purpose, we define
the concept of a nice name.

Definition 59.

For τ ∈ V P, a nice name for a subset of τ is a name of the form
⋃
{{σ} ×Aσ : σ ∈ dom(τ)}
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